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Abstract—This study formulates, by the technique of integral transforms, the solution of a
layered half space subjected to a concentrated force which may act either vertically or horizon-
tally in the interior of the system. Accurate approximations of the reciprocals of the common
denominators in the solution integrals are suggested in such a way that the latter are in standard
closed forms and can be identified by two parts. The first part is the singular part of Mindlin’s
solution which is singular at the point of application of the force, and the second is non-singular,
The solutions for plane problems are also obtained in closed forms by performing appropriate
integrations of the solutions for the corresponding three-dimensional cases.

1. INTRODUCTION

The static behavior of a multi-layer elastic half space has been a subject of interest since it
represents a closer approximation to many actual conditions of real soil in natural deposits,
which are layered in character. Adequate investigations for cases due to a force applied in
the interior of such a system should give more reliable informations for the analysis and
design of foundation systems such as the anchor of guy wire and suspension cable, etc.

General solution for two- and three-layer elastic half space in integral forms was first
given by Burmister[l, 2]. Subsequently, with the approximation of the reciprocal of the
common denominator involved in the integrals, the same author presented a complete
numerical solution for displacements and stresses in a layer with an underlying rigid base,
and loaded by a vertical concentrated force on the free surface{3]. By integration of Bur-
mister’s solution, Poulos[4] presented the solution for any general shape of loaded area.
A two- or three-layer system loaded by a circular footing was studied by Acum and Fox[5].

The use of the technique of Hankel transforms in the analysis of axisymmetric problems
of an elastic half space subjected to indentation was presented by Harding and Sneddon(6],
and it was extended by Muki[7] to asymmetric problems. Westmann[8] generalized Muki’s
formulation and obtained the solution for a two-layer system subjected to a surface shear.
Recently, Chen[9] presented a general formulation in the form of Fourier integrals in
Cartesian coordinates of a three-layer system, which is applicable for vertical loading over a
region of arbitrary shape on the surface. To improve the convergence of the numerical
integration, the solution integrals of these systems were subtracted by the ones for a homo-
geneous half space and the results were evaluated by the Gaussian quadrature method. For a
system consisting of many layers, a matrix method to reduce the computational work involved
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was proposed by Kuo[10] and Thrower[11]. Another general formulation by the technique
of Fourier transforms were derived by Lemcoe[12] for plane strain problem of a two-layer
system. The solution integrals were evaluated by numerical integration using Simpson’s
rule. All of these works are limited to cases of forces acting on the surface of the half space.

Force at a point in the interior of a homogeneous elastic half space was first studied by
Mindlin[13]. The solution was obtained from Kelvin's solution by the method of synthesis
and superposition. This classical method requires ingenious guesses of the proper potential
functions. Mindlin reconsidered the same problem later[14] and solved it directly by means
of Papkovitch potential functions. The same potential functions were applied by Rongved[15]
to formulate the solution for a force in the interior of two joined semi-infinite solids. These
solutions can be obtained by using Muki’s formulation as will be shown in the following
discussion.

The object of this paper is to apply Muki’s formulation to the problem of a layered
elastic half space subjected to a concentrated force which may act either vertically or horizon-
tally in the interior of the system. To avoid the use of numerical technique in the evaluation
of the integrals involved, accurate approximations of the reciprocals of the common
denominators of the integrands by means of integral least square method are suggested.
And it will be shown that the proposed solution can be separated into two parts, the first
part is the singularity of Mindlin’s solution which is singular at the point of application of
the force and the second is non-singular and expressed in terms of standard integrals
involving Bessel functions. The solution thus obtained is in closed forms. The solution for
the plane problems, also in closed forms, are obtained by performing appropriate integrations
of the solutions for the corresponding three-dimensional cases.

2. GENERAL EQUATIONS AND SOLUTION

A two-layer elastic half space whose elastic properties, denoted by the shear modulus u
and Poisson’s ratio v, for the upper and lower layers are distinct is depicted in Fig. 1. In
this study, four cases for a concentrated force applied either vertically or horizontally in the
interior of the upper layer or the lower layer, i.e. the half space, are presented.
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Fig. 1. Force at a point in the interior of a layered elastic half space.

It is convenient to employ cylindrical coordinates (#, 8, z) and to introduce an imaginary
horizontal plane passing through the point of application of the concentrated force, which
leads to a three-domain problem. The general solution of the Navier displacement equations
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of equilibrium are obtained by Muki[7] through the utilization of Fourier expansions with
respect to the angular coordinate 8 and Hankel transforms with respect to the radial coordin-
ate r. Accordingly, the displacements #, v and w may be written as follows:

* o]

ugr, 0, z) = Z u,,{r, z)cos mo 6))
m=0

v(r,0,2) =Y v,(r, z)sin m V)
m=0

wir, 0,2) =3 w,r, z)cos md 3)
m=0

where the subscript i = 1, 2 and 3 denoting the top, middle and bottom domains respec-
tively and, for each harmonic m,

umi(r’ Z) + Dmi(r’ Z) =f {[”ZAmi + ’1(1 + r’z)Bmi + 2'1Emi]e"z
0

+ [-7*Cpi + 1(1 = 12)D,,; + 2nF, e ") dn (4)

ti(7s 2) = Vi1, 2) = | {[=1*As = (L + 12) By + 20, Je™
]

+ 1?Cpi — n(1 = 12)Dpy; + 2nF, Je "™,y (nr) dn 5

Wi, 2) = [ A= Ay (2 = 4%, = n2) By Je™
+ [—1*Cpi — 12 — 4v; + 12) D, e~ (nr) dy (6)

where J,, is Bessel function of the first kind of order m, the coefficients 4,,; to F,,; are to be
determined from the boundary and continuity conditions, and A4,,5, B,; and E,,; are set to
be zero in order to take into account the requirement that the functions should be bounded
at infinite depth.

Observe that equations (1)-(3) represent only the solution for the case which is symmetric
with respect to the coordinate axis § = 0. For a complete presentation, it is necessary to add
the antisymmetric fields which are obtained by interchanging the roles of cos m6 and sin m®0.
The normal stresses g, , o, and a4, and shearing stresses 7,,, 7,5 and 7,4 corresponding to the
displacements can be obtained from Hooke’s law.

3. VERTICAL CONCENTRATED FORCE

Case 1—vertical concentrated force acting in the interior of the upper layer

For the case of a vertical concentrated force P acting downward at a depth z’ below the
free surface as shown in Fig. 1, the problem is axisymmetric with respect to z-axis. The
displacement v, shearing stresses 7, and 7,9, and all the derivatives with respect to 0 vanish.
In this case equations (1)-(3) are simply given by harmonic terms for m =0 only, and
E,; = F,; =0 which is observed from equations (4) and (5). For simplicity, the subscript m
will be omitted. The traction due to the concentrated force P can be represented in the form of
a Dirac delta function,

_ Pi(r)
T 2nr

q(r)

Q)
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which may be represented in the integral form

a) = | atinlotrr) dn ®)
where
400 = | aC)r) ar =3-. ©
Boundary and continuity conditions. The free boundary conditions at the plane z =0 are
0,,(r,0) =0, 7,,(r, 0) = 0. (10)
The continuity conditions at the plane z = 2z’ are
u(r, z") = uy(r, 2°), wi(r, 2') = wy(r, 2) 1n
0.1(r, 2') — 0,5(r, 2') = q(r) (12)
Tn(r, 2) = 1,,(r, 2). (13)
Lastly, the interface continuity conditions at the plane z = & are
uy(r, ) = uy(r, h), wy(r, B) = wy(r, h) (14)
o2t ) =0.,5(r h), T ) = T h). (15)

Substituting the expressions of displacements and stresses into equations (10)-(15), in
view of equations (8) and (9), leads to a set of ten simultaneous equations for determining the
ten coefficients 4,-D;, A,-D, and C, and D5 . Introducing the dimensionless terms

a=nh, {=z/h, p=rh, B=2z|h, (16)
the displacements are in turn obtained in the following dimensionless forms:
who [y z_:)]
L uo,0)= [ |t 0+ 522,00 e (17
ﬂ1h _ © 3 wi(aa C)
5o 0= [w,- (@ 0+ =5 | Jotoe) do (18)
where
D(@) =1 — (a + b + 4ba®)e ™ 2* + abe ™ ** (19)
(B — 4v3) — o3 — 4vy)
= 20
a 3—4vy + py 20)
(1 =~ o)
_ 21
T+ 43 — ) @
Ho = Hally. (22)
Fori=1and 2,
T ) = (B — e~ ~Ch @)

167{'}’0
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—x 1 - 18~la
WD) = e T B = Cale 9
o

1
afe, () = ‘fgn—y; [[—4?0 Y2 — 7B — Da + zﬁgaz]e_wﬁ)a + [—4a— b}??{

+ by (B — Do — 2b(1 — B)(1 — aPle™ P H8+0= 4 gb(B — Do =47 A+O-

+ [=3y.(a = b) + (8byoy2 — b + al)x — 2by,(1 — f — D)o

+4b(1 — B)lole” G802 4 ab(B — Dae™ “HITO% 4 [— Iy (a - B) |

+ (8byoy; — af + bl)a — 2by;(1 — B — )a? — 4bB(1 — Do’le " +P~0=

+ [—4abyoy; + aby (B — O + 2abBlale® ¢ F79% — [K(a — by})

+ by, (B — Do + 261 — Y1 — {a’fe™ @ 7F70%] (25)

1
wila, {) = Tomre [[droys + 1) + 74(B + Do + 28l *9% 4 [—H(a + by})

+by1(2 ~ B = D — 2b(1 — B)(1 — a’le™ G +A+0* — ghly,
— (B~ Dale™ PO 4 {dy(a+ b) + [2b(4yoy; + 1) — bB + alln
+ 2byy(1 = B+ Do? + 4b(1 — f)la’ye™ GO — ably,
+ (B — Dale” 470" 4 fhy (@ + b) + 2b(dyoy, + 1) + af — bl
+ 2By, (1 + B — Do® + 4b(1 — HaPle ™ CH~0% L gb[—(4y,y, + 1)
+ 9108 + Do — 28La?le™ ¢ 7P 4 [d(a + by}) + by, 2 — B — Dt
+ 2b(1 — X1 — Oazle—(z*p-;}a] {26)
and, for i = 3,
i ) =wie, =0 @7
ufo, §) = 'él;c- [{(c = dyy3) + 2[yi(c — d + d0) — dBysla + 4B(c — d + dDaJe~C P2
+ {(—ac + bdy;y3) + 2bd[Bys — 4(v; — v3) — il
— 4bd(1 — )1 — Da}e " CHET% 4 ey, — dysy + 2[e(l - B)

—d(1 = D)ode™ "M + {(~acy, + bdys) + 2[ach — bd(yy; ~ 1 + Dl
+4bd[By; — y:(1 — Dla® + 8bdp(l — Da’le™2+47F"] (28

Wi, ) = 5= [+ dipa) +2n(e — d-+ d0) + dBysle + 4f(e — d+ dDya)e 6P
+ {—(ac + bdy,y3) + 2bd[2(3 — 2v; — 2v3) — By; — y,{J
— 4bd(1 — (1 — DaYe™ CHP% 4 {(ey; + dy;) + 2[e(1 — B)
—d(1 = Dloje™ 7P + {—(acy, + bdys) + 2[acP + bd(yyy; + 1 — Dl
— 4bd[By; + y:(1 — Dle® + 8bdB(1 — Hale™CFeHA], 29
In equations (25)-(29),
Yo=1-v, 71 =3 =4y, V2 =1—2v, V3 =3—4v (30)
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1
¢ = 31
Py @D
1
- . (32)
Y3 + o

Note that the solution functions take the same form for i =1 and 2. Thus the proposed
solution is given in the form of a two-domain problem. The integrals given by if(«, {) and
wi{a, {) in equations (23) and (24) correspond to the singularity of Mindlin’s solution[13],
while the integrals given by @ («, {} and w,(«, {) are non-singular. It is of interest to mention
that Mindlin’s solution can be derived by the application of the proposed solution technique
to the case of a homogeneous half space.

Evaluation of integrals. To avoid the laborious numerical integration[8, 9, 12] in equations
(17) and (18), the reciprocal of D(a) involved in these equations will be approximated in such
a way that the integrals assume standard forms.

Since D(«) is positive for all values of o from zero to infinite and asymptotic to unity as «
approaches infinite, it is reasonable to approximate 1/D(a) by a series of exponential
functions of the form

1/D() =~ 1 + R(e) (33)

where
R@) =Y kyer (34)
i=t

a+b—ab s

k=227 S g
YTl —a—b+ab =

(35)
and s is a positive integer, k; are constants and p; are real numbers greater than zero.
Observe that the approximate function proposed in equation (33) is smooth and con-
tinuous, asymptotically approaches 1/D(a) at o — co and in view of equations (19), (34)
and (35), assumes the exact value of 1/D(x) at « = 0. Furthermore, it becomes unity when
lo =1 and v, = v; and leads exactly to Mindlin’s solution.

A logical scheme to determine p,, k; and p; for j = 2 to s, is by a process of trial and error
with the help of the integral least square method. The normalized error in this case is
defined by

gla) =1 — D(a)[1 + R(x)]. (36)

The integer s may take a value equal to 4 as a starting point of this approximation as adopted
by Burmister[3] for the special case of a rigid lower layer. The values of p; are first assumed
and the constants k; are then determined in such a way that the square of the error is
minimum, i.e,

"a% f:[e(a)]z da=0, j=2tos (37)

Since the approximation of 1/D{x) as proposed yields the exact value of the latter at « = 0,
the integration of the normal traction on a horizontal plane is equal to zero when the plane
is above the point of application of the force P, and equal to P when the plane lies below. If
the approximation thus obtained is not accurate enough for practical purposes, another set
s and p; should be assumed for the second trial and so on.
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Solution in closed form. In view of the approximation of 1/D(2) given by equation (33),
the displacements for each layer given by equations (17) and (18) may be expressed in the
general form,

[=T*+1I° (38)
where
1 = [ "T*(a, 0, (o) de (39)
0
I = f "I, O + R@)V,(pa) da. (40)
1]

The functions T*(x, 0) and I(«, {), in view of equations (23)~(29), can be symbolically written
in the forms

*a,0) =Y c,ame” b~ ¢ 41)
n
I, ) =YY cjome™/e (42)
[ ]
where the indices / and #n are either zero or positive integers, the coefficients ¢, and ¢, are

point functions and f; is a positive point function. In view of equations (33), (41) and (42),
equations (39) and (40) take the forms

I*=chG[m’n’|ﬁ_Cl] (43)
= ¥ k{3 T anGlm n, (i + )] )
where
ko =1, Po=0 (45)
Glm, n, p] = J.ma"e_"“Jm(pa) do for p=>0. (46)
]

Equation (46) involves standard integrals which are evaluated in closed forms and listed in
Appendix A. The integral I*, which is singular at the point of application of the concentrated
force, is the singularity of Mindlin’s solution while the integral /¢ is non-singular. Thus the
proposed solution is in closed forms. In the limiting case of a homogeneous half space, uo =1,
v; =v; and k; =0 for j =1 to s, and the integral I° simplifies into the non-singular part of
Mindlin’s solution.

Case 2—uvertical concentrated force acting in the interior of the lower layer

For the case of a vertical concentrated force P applied in the interior of the lower layer at
z = 7', the half space is divided into three domains: domain 1 for 0 € z < 4, domain 2 for
h<z<z and domain 3 for z' € z < 0. Thus, f > 1 for this case. Prescribing the ten
boundary and continuity conditions in a similar manner as in Case 1 leads to the solution
which assumes the same form given in equations (17) and (18). In this case, for i =1,

1@, ) =W, ) =0 %))
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50 0 = g [tne = 734 = 20e(1 = ) + d(B — Dlede™? 5 + (=yac + 13 bd

+ 2[bd(y,y: — 1 + B) — aclloe + 4bd[ys { + (B — D] + 8bd(B

— D0 *2T0% 4 {e — 9iy,d + [ 2y(c + dB — d) + 2dy; {Jx

+ 4(c+ dB — )l ETO% 4 {—ac + bdy,ys + 2bd[y;(1 — )

+71(8 — Dl + 4bd(B — (1 — a’Je™F+2+0] (48)

wio, {) = -8—11; [rie + y3d + 2[c(1 — ) + d(B — Dlxte™¥9% 4 {—(y,ac + bdys)

+ 2[bd(y1ys — B + 1) + acl]e + 4bd[y,(B — 1) — 5 {Jo* — 8bd(B

— D} 270 4 e+ ypad + 2yile + df — d) + dy, Ll

+4(c + dB — d)lale O 4 {—(ac + bdy,ys) + 3bdlys(l — 0)

— 718 — Do + 4bd(f — D(I — DaPle™W+2+09] 49

and, for i =2 and 3,

1
5,0 = o | =~ Do 2 [ = i - 1)
+ (1 = o)eys(B — 0+ 2(1 — pro)d(B — 1)(1 — O&z}e“”“z"""] (50)
w100 = e | b+ 18 = ke [ 2 11 1 = o)
(& 0) = 167po(1 — v3) V3 2 Holdys

+ (1 = po)dys(2 — B — Do + 2(1 — po)d(B — (1 — C)az}e”(5’2+§)a]
(51

_ 1 (82400
i, ) = 8 [yice B=2+0% 4 {c — yyac — dyoy3d? — 8y y3d*(B — Do + 4l

+ dedyo(B — 1) — dypd(c + df — (1 — Do {e™ 0% 4 [—ac + 4y, 7% bd?
+ 890 bd%y5(B — Od + 169, bd*(B — 1(1 — DaPle™ ¥ +2+94] (52)

1
Wi, {) = e [Y1ce-(ﬁ-2+m + {c — yac + dyoy3d* + 8ypv3d2c + d(B +{ — Do

+ 4c + dedyo(f — 1) — dpod(c + df — )1 = Olele™ P+ + [~ (ac
+ 47073bd%) + 8172 — f = D + 1670 bd*(F — (1 = Dole™P+2+07],
$3)

It should be mentioned that 1/D(a) is singular at « = 0 when p, = 0, which is immaterial
for Case 1 but a practical limiting condition for Case 2. For convenience in the treatment of
the latter, the solution for Case 2 is formulated in such a way that #7(«, {) and w¥{x, )
contains singular as well as non-singular terms. For g, = 0, the case of a rigid upper layer,
the functions #{«, {) and #W{a, {) of the lower layer vanish and the solution, given by
i} (e, {) and Wi (a, {) only, is exact. Obviously this special case is identical to the half space
fixed on the surface, a limiting case of Rongved’s solution.
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4. HORIZONTAL CONCENTRATED FORCE

Case 3—horizontal concentrated force acting in the interior of the upper layer

For the case of a horizontal concentrated force P applied at a depth z’ below the free
surface as shown in Fig. 1, the problem is symmetric with respect to the coordinate axis
0 = 0, oriented in the direction of the force, and the traction due to the concentrated force P
is represented in the form of equation (8).

Boundary and continuity conditions. The free boundary conditions at the plane z =0 are

0.,(r,6,00=0 (54)
T,0:(r, 6,0) =0, Ti(r, 8,0) =0. (55)
The continuity conditions at the plane z = z* are

u,(r, 8,2y = uy(r, 0, 2, vi(r, 8,2) = v,(r, 8, 2") (56)
wi(r, 0,2y = w,{r, 8, 2) 57
0,4(r,0,2) =0,,(r,0,z) (58)
Toa1(rs 0, 2) — 1,95(r, 8, 2') = —g(r)sin 6 (59)
T, 8, 27) = 1,,,(r, 8, 2°) = g(r)cos 6. (60)

Lastly, the interface continuity conditions at the plane z = & are
u,(r, 6, h) = us(r, 6, h), vy(r, 6, h) = v4(r, 6, h) 61)
wy(r, 8, h) = wy(r, 8, h) (62)
6,.(r,6,h) =0,5(r,6, k) (63)
Toa2(t, 0, ) = 1,93(r, 0, A), T2, 6, 1) = 1,4(r, 6, B). 64

In view of equations (59) and (60), the displacements and stresses are simply given by the
harmonic terms for m = 1 only. For simplicity, the subscript m will be omitted. The set of
fifteen coefficients 4,-F,, 4,-F,, and C,, D, and F; are to be determined from equations
(54)—(64). To facilitate this task, u; and v; are rewritten in combined forms as equations (4)
and (5) and the shearing stresses 7.4; and 17,,; are treated in the same manner{8)]. In this case
the dimensionless forms of the displacements are given by

S w6.0,0 = U, D + V(6,01 (©)
Hi _ _

S 06.0,0 = 41U, 0~ ¥, D) (©)
o wip.0.0= [ 516, + 22D o0 o &)

where

hd ol Tk Ui(a’ C) V(O(, C)
Up. 0 = [[ 107, 0 + TG D1+ | 5 ] o) @
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- U,-(OC, C) Vi(ar C)
D(a) H(x)

e 0= [ fi-Or 0+ G o+ | [ roton) a

1“#0 -2
Ha)=1———e ™"
() T o

Fori=1and2

— 1 g
Ufa, ) = —— [~y + (B = DaJe1F 7%k
167y,
P ) = e o
4n
_ 1 o~ _lpc
W@ ) = (= Dae ™15
167y,

Ui((xa{) =

167y,

[[—<4voy2 T 1) (B + D — 280070 4 [y(a + by?)

(69)

(70)

(71)

(72)

(73)

+by,(2 — B — Da+2b6(1 = B)(1 — ele™ 0% + ably, + (B — DaJe™ @ 7F+0"

= Bas b+l 66 +2 = = 21 =+ D

+ 4b(1 — B)Coﬁ;e"‘z‘“g’“ + ably, — (B — DaJe ¢+F-0= 4 {— }}z—l(a + b)

+ [aB + 26(470 7, + 1) — bl — 26y, (1 + B — Da® + 4bp(1 — g)a3}e-<2+ﬂ—c>«

+ab[(4y07: + 1) + (B + O + 2BLo*le @ 7P79% 4 [—L(a + by?)

+ by (2 — B — D — 2b6(1 — B)(1 — C)aZ]e-(z—a—cn]

1 1 - . - —(2-p-
Va, C)=4_[e"(lfﬂ)u+_y°{e—(2—li+s)a+e-(2+ﬂ O 4 o= (278 c>a}]
i 1 +[l0

wia, 0) [[4vc Y2 — 1B — O — 2BLa*le™ ¥+ + [4(a — byd)

B 167y,

+ 3,8 = Dot + 26(1 = B)(1 — Oadle " CHB+02 4 gb(B — (e~ B+

+ {"3 (@ = b) + [=b(B + 8y072) + alle + 26y, (1 ~ f = Oor* + 4h(1
- ﬁ)ga3}e-<2'/‘+0“ + ab(f — Hue~ @A 4 B—‘ (a—b) + (L — ap

T 8307200 + 2by,(1 — B — O — 4bB(1 — C)as]e““’*'““ + ab4yeys

+ 718 — Qo = 2BLa[e” @ 7F7% + [Ha — by}) — byu(B — Do

+28(1 = p(1 - Orle 24 0%|

(74

(75)

(76)
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and, fori =3,
U*a, ) = V¥, {) =W (2, ) = 0. o))

U, ) = {;;; [{—(c + dyyvs) + 2Mvilc — d + d0) + dPyslo — 4B(c — d + d))a?je™ €+ 0

+ {(ac — bdy,y3) + 2bd[y;(1 — ) + y5(1 — B)la + 4bd(1 — H)(1
= atye” GHEPDr 4 f(— ey, + dys) + 2[c(1 — B) — d(1 — Daje” ¢ P
+ {(acy; — bdys) + 2[acB + bd(y,ys + 1 = Ol + 4bdly,(1 — {)

+ ¥, ﬁ}az + 8bdB(1 — C)a%e"zﬂ_m"j (78)
v _ Ho (S I LR (3
Vi, §) = Zmn(l 20 [e % te %] (79)

w2, ) = —8—1“7: [{—c + dpys + 20yl — d + dO) — dfysle — 4B(c — d + d)oJe™ P

+ {(ac = badyyys) + 26l (1 — ) = 5(1 = Bl + 4bd(1 ~ F)(1 ~ Pole™ @ e+
+ {(=epy + dyy) + 20el = ) — d(1 = Olde™ D" + {(acy, — bdyy) + 2fac

~ bd(yy; — 1 + Dl + 4bd[y;(1 — {) — y3 Bloe? + 8bdB(l — {oPJe~ @ +-9s],
(80)

The denominator D{(x) takes the same form as equation (19). Again the proposed solutionis
given in the form of a two-domain problem. The integrals given by U*(a, {), V*(x, ) and
w*(a, {) correspond to the singularity of Mindlin’s solution for a horizontal concentrated
force. The total solution of the latter can be obtained as a limiting case.

Evaluation of integrals. Following the same arguments used in the approximation of
1/D(), 1/H(a) will be approximated by

1
Y R 8
7@ 1+ R (%) €3))
where
R() =Y kie™?™ (82
=1
L—pe &

AP N N 83
! 2o jzz ! ®3)

In view of the approximations of 1/D(x) and 1/H(2), the integrals in equations (65) and
{66) may be expressed in the same general form as equation (38) with 7* and I* taking the
forms

1" = [T D + T3 DV a(po) A (84)

1= [ {140 Ot + RE)T+ I, 1L + R@I o(p) dee 89)
As in Case 1, the singular integral I* and the non-singular integral I° are given in closed

forms of finite series of standard integrals G[m, n, p] as defined in equation (46) and listed
in Appendix A.

1ISS Vol. 10 No. 11—B
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Case 4—horizontal concentrated force acting in the interior of the lower layer

For the case of a horizontal concentrated force P applied in the interior of the lower
layer at z = z’, the half space is divided into three domains as in Case 2. Prescribing the
fifteen boundary and continuity conditions in a similar manner as in Case 3 leads to the
solution which assumes the same form given in equations (65)—(67). In this case, for i = 1,

Ui, ) = Vi, ) = Wi, ) =0 (86)

— 1
Ui, ) = - { =30 +y3d) + [ell = ) +d(f — Dloje™ P79% +{3(y1ac + y3 bd)

+ [bd(yys — B+ 1) + aclloe + 2bd(y5{ — y)a® — 4bd(B — 1){a’}e™#*2-0=

+{—=c+yv:d) + [y{c —d + dP) + y3dllx — 2[c + d(B — D) e}~ F+O=

+ {$(ac + yyy36d) + bdly;(1 — ) — y(f — Dlo — 2bd(B — 1A — {HaPje~E+2+0],
(87)

1

[N Pl ¥ Sl 4 14 - {B+{)a
T fe +e ] (88)

V;((X, C) =
wi(e, §) = ZI; [B(=yic +y3d) — [c(1 = O) + d(f — Dlwte™ P79 + {3(y,ac — y; bd)

+ [bd(yyys + B — 1) — aclle — 2bd[y (B — 1) + y3 {]o® + 4bd(B — 1){a*ye™BF2-0=

+ {3 (—c+pysd)+ [—lc —d+dP) + p3dlle — 2[c + d(f — 1)] + {aPle”F+0"

+ Hac = y73bd) + bdlyy(1 = O + n(B — Dl — 26d(B — (1 = PaPle™ " 2+07]
(89)

and, for i =2 and 3,

020 = fomm ey (v + 8 = D75+ {211 45501 = ]
+ (U= Mdys2 = = D = 21 = p)d(p = (1 = Dfe™072+0%| - 90)
Vo, ) = - o107 — e =200%) o
% ~ip-tla o |73
P ) = femos |~ (0= 00 {2 11— 3301 — )

+ (1 = o)dys(B — D — 21 — p)d(B ~ (1 — c)aZ}e"“’*“““] (92)
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- 1
U, O) =1~ pi0e” 7200 1 (— (e — yrac + 4yoy3 d*) + 4073 d(2c — 2 + B+ D

= 2{c + 4yod[c(B — 1) — (c — d + dB)(1 — D)T}a®)e™ P+O% + [Y(ac + 4y, y3 bd%)
+ 49073 6d%(2 — B — D — 8y bd*(B — 1)(1 — )a?le ™+ 270 93)

~(B+Da | o= (B-2+0a
Vi, {) = 2201 +llo) [e +e ad 94)

1
wia, ) =— [—%ylce“”‘“‘” + (3(—c + yiac + 49,93 d?) — dyoy3 d*(B — D

- 2{0 +4dyod[e(f — 1) — (¢ — d + df)(1 — Dlle)e™ P70 + [Y(ac — 4y, y3 bd?)
+ 470 bd%y3(B — Do — Byo bd*(B — 1)(1 — Dale™F+2707]. (95)

It should be mentioned that, in this case, 1/D(a) and 1/H(a) are singular at « = 0 when
U =0, a practical limiting case. The solution is formulated in the same manner as Case 2,
and Uf(a, §), Ve, {) and wF(e, {) contain singular as well as non-singular terms. For
Uo = 0, the functions U («, {), Vi(«, {) and w(a, {) of the lower layer vanish, and the solution,
given by U¥(«, {), V¥(a, {) and w(«, ) only, is exact. The latter is the solution of the half
space fixed on the surface, a limiting case of Rongved’s solution.

5. PLANE PROBLEMS
For the plane strain problem of a vertical line force uniformly distributed on a line
parallel to y-axis, the solution can be obtained from that for a concentrated force P by per-
forming an appropriate integration[16]. The normal stresses ¢,;, and o,; and shearing
stresses 7,,; are obtained with dimensionless forms,

h - 6.(a, {)] cos &u
ot 0= [ ot 0+ D] 2 g 96)
: 3 T,(a, £)] sin &a
Eﬁtrxi(é’ C)_fo [ zrt(a C)+ D( ) ] (X da (97)
: _ a,{, ()] cos Ea
P 0= [ |ara 0+ o) g (08)

where 6¥(, {), TX (o, O), 5, 0), 6,(x, ), T2, {) and &, (a, {) are functions obtained from
the corresponding solution for a concentrated force P, and

& = x/h. (99)
In view of the approximation of 1/D(a), equations (97)-(98) may be expressed in the
general form of equation (38). In this case, the integrals I* and /¢ are given by finite series
of standard integrals G[n, p] and G_[n, p] in the forms
G.n, p) = j «®~ Ve~ sin £o da (100)
0

G.[n, p] = fo o~ De =P cos Eq dat (101)
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in which #n = 0 and positive integers, and p > 0. The closed form solutions (100) and (101)
are listed in Appendix A.

For the case of a horizontal line force, the solution of the plane strain problem is obtained
in similar forms as given by equations (96)-(98) with the substitutions of (—cos é«) and
sin &a for sin £ and cos £ respectively.

The solution of a plane strain problem with Poisson’s ration v can be taken as the solution
for a plane stress problem with Poisson’s ratio equal to v/(1 — v). It is of interest to note
that equations (96)—(98) yield Melan’s solution[17] as a limiting case of a homogeneous half
plane under plane stress condition.

The displacements in these plane problems, as in any plane problems involving an
infinite elastic domain, are arbitrary.

6. NUMERICAL RESULTS AND DISCUSSION

For any values of v, and v5, 1/D() is greater than unity when g, < 1; and less than unity
but greater than zero when p, > 1. This is shown in Fig. 2 for v, = v; = 1/4 and u, = 0-02,
0-1 and 50 as examples. Furthermore, for p, < 1, the value of 1/D(0) increases as p,
decreases. This information is very helpful in assuming the set of p; in the approximation
scheme. For v; = v; = 1/4, and g, = 0-02, 0-1, 0-5, 5-0, 10-0 and oo, the approximations of
1/D(«) and 1/H(«) are given in Appendix B. For other values of Poisson’s ratio, the approxi-
mations are presented in [16].

630 5333 ' ) ; J
330 | : e
| |
30 i ‘
~ A - !
. . }uo ooz |
G ! i |
= L ALE; 2002 | !
I | |
~ o | |
; 20 k | A = Approximate
s t E = Exact
s AEMEOL 1/D(@)
a o B A S P 1/H ()
> - .1
- yl = Ua_ %
‘ Asymptotic to | —
1.0 i—
0.5 LA Ef750 |
0.0 L
00 05 10 1.5 20 25 3.0 3.5 40
a

Fig. 2. Comparison of the reciprocals of the common denominators with their approximations.

The comparison of 1/D(x) and 1/H(a) with their approximations over the whole domain
of interest, 0 < « < o0, as shown in Fig. 2, is quite satisfactory for all cases. These approxi-
mations may lead to slight violation of the boundary and continuity conditions, but the
discrepancies are not significant for practical proposes as shown, for examples, in Figs. 3-8.
The results for the displacements yield higher order of accuracy.

For the case of a vertical concentrated force applied at the mid-depth of the upper layer
with uo = 5-0, Figs. 4 and 5 show that the stresses ¢, and 7,, are continuous at the interface
and damp out slowly inside the lower layer. Figure 5 shows a double-peak distribution of 1,
at different radii near the horizontal plane through the point of application of the force,
which is due to the high concentration of stresses in the vicinity of the force where the
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singularity of Mindlin’s solution is dominant. Another set of numerical results is presented
in Figs. 6-8 for the case of a horizontal concentrated force applied at the mid-depth of the
upper layer with p, = 0-02. The stresses in the lower layer are small due to the low ratio of

Ho -
0.0 T T
=0
05 =]
] N p-00s
f ———1-p =0.25
:h P=0.1

L5 l l

2 -0 -8 -6 -4 -2 0 2 4 6 8 10 I2

W2
B [0y/c080]
Fig. 6. Distribution of o, for Case 3, 8= 0-5 and po = 0-02.
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-181 -0t -51 -1 -05 o 05 ! 51 101 151
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21 /5m8)

Fig. 7. Distribution of 7, for Case 3, 8= 0-5 and p, = 0-02.

The effect of u, on the distribution of interface o, for the cases of vertical and horizontal
concentrated forces are shown in Figs. 9 and 10 respectively. It is observed that the stronger
the layer in which the force is applied, the faster the stress o, decays in the unloaded layer. It
is also true for the stresses 7, and 7.,. However, this viewpoint is not applicable to o,,
g, and 7,4 since discontinuities are allowed at the interface, and the rigidity of the lower
layer plays a dominant role in this case. The error introduced by assuming both layers to be
homogeneous, i.e. yo =1, may be large and give a completely wrong picture of the stress
distributions in the actual system.

For the case of a vertical line force acting on the surface of a two-layer elastic half plane,
good agreements are found between the results obtained by the proposed solution and those
given by Lemcoe’s solution[12], as shown in Fig. 11. In Westmann’s solution[8] for a two-
layer half space subjected to a surface shearing force uniformly distributed over a circular
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-075 N
/ 15 =0, U‘- 13’ v

Proposed solution
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Fig. 11. Comparison of interface o, in a half plane problem with Lemcoe’s solution,

area, the same common denominators D(z) and H(«) occur in the solution integrals. With
the proposed approximations of 1/D(«) and 1/H(«) for the case where i, = 0-1 and v = 1/4,
the computed interface shearing stress ., at p = 0 agrees with Westmann’s solution within
05 per cent.

7. CONCLUSIONS

The accuracy of the proposed approximations of 1/D(x) and 1/H(«) has been verified by
the results of the proposed solution, which show that the slight violation of the boundary
and continuity conditions due to these approximations is not significant for practical pur-
poses. The comparisons of 1/D(«) and 1/H(e) with their approximations as shown in Fig. 2
are satisfactory even for the worst case. The approximations are asymptotic to unity as
o — oo and assume exact values at o = 0. The latter guarantees that the integration of the
traction on a horizontal plane is equal to zero when the plane is above the point of applica-
tion of the force P, and equal to P when the plane lies below.

The proposed closed form solution yields good results without laborious work required
by numerical integration technique(8, 9, 12]. The identification of the singular part of the
solution assures good precision in the vicinity of the point of application of the force.

Although the proposed solution for the two-layer half space is approximate, it yields, as
limiting cases, the exact solution of Mindlin and Melan as well as of the half space fixed on
the surface, the latter a limiting case of Rongved’s solution.

The numerical results which show the effect of u, on the stress distributions at a distance
away from the force are of practical interest in the analysis and design of foundation systems
involving two layers of distinct properties, such as pavement on grade and the anchors of
guy wire and suspension cable in stratified soil.

The solution for the case of a force arbitrarily distributed over an area may be obtained by
an appropriate superposition of the solution for a force with intensity g, uniformly dis-
tributed over a small area of radius r,. The solution of the latter case can be obtained by
means of the Hankel transform g(n) of the applied traction g(r) equal to g,J,(ron)/(7ren).

The extension of the proposed solution to a multi-layer system, while laborious, presents
no fundamental difficulty.
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AGcrpakT — Ha ocHOBe mosiyMeMOpaHHO# TEOPUH 000I0UEK ONIpeAessAeTCS HOBask JUCKPETHO-
CIUIOINHAS aHATMTHYeCKass MOAEIb IS NPU3MATHYECKHX OOOJIOYEK ¢ INECTHYTOJIbHBIM
MONEPEYHBIM CEYEHMEM. BBIBOOATCS OKOHYATENbHO PE3YIbTATHI AN HANPSXKEHUHA B BHOE
HECJIOXHBIX BBIDAXKEHHI.

IlpoBepsieTcs npennaraeMas MOJENb C TOYKHM 3pEHUst AHAJIA3A U PE3YJIbTATOB KOHEYHOTO
anemMeHTa. OLEHUBAETCA TOYHOCTH BO BCEX HCCIICHOBAHHBIX ClIy4adX, KOTOpas UCKIIOYMTEILHO
Hajutexaia. I1o3ToMy oKa3biBaeTCst, YTO 3TOH METON NaeT MPOCTbIM, HO MOIUHLIN HHCTPY-
MEHT, B 00JaCTH NPOSKTHPOBKH MOACOOPHBIX TPyOOIPOBOAOB SOEPHBIX PEAKTOPOB.

APPENDIX A—-STANDARD INTEGRALS IN CLOSED FORMS
The infinite integrals involving Bessel functions of the form

Glm,n, p] = J.Ooooc"e—p“Jm(pot) do (46)
are given in closed forms as follows. For p > 0,
610,0.p1 = (A1)
GI0, 1.p) =45 (A2)

G[0, 2, p] = — = 1 - 3—”—2) (A3)
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3p 5p®
Glo, 3, pl = — 2 (3 - F) (Ad)
30p>  35p*
p
G[1,0,p] = —t — A
(1,0, p} RR+p) (A6)
Gll, L) =5 A7)
3pp
GlL, 2, pl =25 (AB)
3p p?
-15 Tp?
Gll, 4.p] = Rf’” (3 —ip—f) (A10)
o2
G[2,0,pl = ———— All
(2,0, p] RR+ o) (Al1)
2
p ?
G2, L,pl=———s {2+ =
2,1, p] BRI ( + R) (A12)
3 2
2.2, =5 (A13)
15p%
GI2, 3, pl ==L f’ (A14)
15p% 1p?
G2, 4, 6 — —-
2401 =2 (6- ) (A19)
where
R =(p* +p}'2. (A16)
For plane problems, the infinite integrals of the forms
Gn, pl = f a® " Ve P gin & da (100)
1]
Gln pl= j P~ Ve~P2 0o Eu du (10D
it
are given in closed forms as follows. For n 2 0 and p > 0,
G,[0, p] = tan™'(¢/p) + oo (A17)
¢
Gl pl == (A1)
R}
G2, p) = 2p (A19)

R



Force at a point in the interior of a layered elastic half space

GJ3,p] = % (3—£)

R2
G,4,p] = % (4 - %)
G.[0, p] = ~In(R,)
G[,p] = Rﬁ
6.2, = (- 1)
Gl3.7) = 7% (‘;’; -3
con-5 [5G

where
R = (& +p)'2.

APPENDIX B—APPROXIMATIONS OF 1/D(«) AND 1/H(o).

1199

(A20)

(A21)
(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

The approximations of 1/D{(«) and 1/H(«) for v, = v5; = 1/4 and various values of yu, are

given as follows. For y, =0-02,

1/D(0)) ~ 1+ 1874 2% 4 112-3e~°* — 144-2¢ 8% — 44.98¢ ™1 4+ 139-4e~ 1

— 106-2¢717* — 452-5¢72%* + 1060-0e %3¢

1/H(@) ~ 1 + 1-783e 2% — 18-24e 5% + 123-5¢ 8% — 255:9¢ 1% 4 ]73-3¢ 14

for po =0-1,

1/D(a) =~ 1 + 16:43e™2* — 45-49e ™ ** 4 109-de ™ °* — 94-07e ™2 — 40-42¢ 1% 4 81-13e ™12
1/H(o) ~ 1 + 0-7114e~2* + 3:057¢** — 15:de~ %% + 45-12¢ 7 3% — 55-49¢ ~10% 4 26-5¢ 12*

for py, =0-5,
1/D(e) =~ 1 + 3-474e™2* — 10-66e " ** + 14-84e ™5 — 6-433¢~®*
1/H(x) =~ 1 + 0-3328e 2% + 0-1162e¢ ~** + 0-0207e ~5* + 0-0302¢ ~ ®*
for y, =50,
1/D(x) ~ 1 —09117e~2* + 0-3684e ™ ** + 0-01217e~®* — 0-1266¢ ~ %"
1/H(a) ~ 1 — 0-6647e 2% + 0-4219¢ ~** — 0-212¢ ™% + 0-0549¢ ~8*
for u, = 10-0,
1/D(x) ~ 1 — 1-081e ™ * + 0-5355¢~2* — 0-1211e 3% — 0-0526e ~**
1/H(@) = 1 — 0-8139e 2% + 0-6189¢ ~** — 0-3534e~®* + 0-0984e 3~
and, for y, =

1/D(e) = 1 — 1-269 ™% + 0-6996¢ ~2* — 0-1938e 3% — 0-0135¢ ~**
1/H(o)) ~ 1 — 0-9909¢ ~2* + 0-8915¢4* — 0-5695¢ =% + 0-1689¢ ~ 5=,

The approximations of 1/D(«) and 1 /H(oc) for other values of Poisson’s ratio are presented

in [16].



